Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells
نویسندگان
چکیده
Cancer cells utilize flexible metabolic programs to maintain viability and proliferation under stress conditions including nutrient deprivation. Here we report that phospholipase D1 (PLD1) participates in the regulation of metabolic plasticity in cancer cells. PLD1 activity is required for cancer cell survival during prolonged glucose deprivation. Blocking PLD1 sensitizes cancer cells to glycolysis inhibition by 2-deoxy-D-glucose (2-DG) and results in decreased autophagic flux, enlarged lysosomes, and increased lysosomal pH. Mechanistically, PLD1-regulated autophagy hydrolyzes bulk membrane phospholipids to supply fatty acids (FAs) for oxidation in mitochondria. In low glucose cultures, the blockade of fatty acid oxidation (FAO) by PLD1 inhibition suppresses adenosine triphosphate (ATP) production and increases reactive oxygen species (ROS), leading to cancer cell death. In summary, our findings reveal a novel role of PLD1 in sustaining cancer cell survival during metabolic stress, and suggest PLD1 as a potential target for anticancer metabolism therapy.
منابع مشابه
Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade.
There is limited knowledge about the metabolic reprogramming induced by cancer therapies and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K-AKT-mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitoc...
متن کاملNeuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.
Docosahexaenoic acid (DHA) is a lipid peroxidation target in oxidative injury to retinal pigment epithelium (RPE) and retina. Photoreceptor and synaptic membranes share the highest content of DHA of all cell membranes. This fatty acid is required for RPE functional integrity; however, it is not known whether specific mediators generated from DHA contribute to its biological significance. We use...
متن کاملAdipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer
Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metaboli...
متن کاملAutophagy and Cancer Chemotherapy: Inhibition or Enhancement?
Cells that encounter diverse stressful conditions such as hypoxia and starvation undergo an evolutionarily conserved process called autophagy [1,2]. Autophagy is a cellular degradative mechanism whereby long-lived proteins and damaged organelles are sequestered within intracytoplasmic double walled autophagosomes that fuse with lysosomes where proteins and lipids are hydrolyzed into amino and f...
متن کاملModulation of Autophagy by Free Fatty Acids
Fatty acids are important molecules with multiple biological properties. Emerging evidence suggests that fatty acids can modulate autophagy. Saturated fatty acids contribute to pancreatic β-cell dysfunction in type 2 diabetes. Palmitic acid, one of the long-chain saturated fatty acids (LCFA), induces autophagy of β-cells which protects them from dysfunctions and apoptotic cell death. Short-chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016